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We investigate experimentally the transition to turbulence of a yield stress shear-
thinning fluid in Hagen–Poiseuille flow. By combining direct high-speed imaging of
the flow structures with Laser Doppler Velocimetry (LDV), we provide a systematic
description of the different flow regimes from laminar to fully turbulent. Each flow
regime is characterized by measurements of the radial velocity, velocity fluctuations
and turbulence intensity profiles. In addition we estimate the autocorrelation,
the probability distribution and the structure functions in an attempt to further
characterize transition. For all cases tested, our results indicate that transition occurs
only when the Reynolds stresses of the flow equal or exceed the yield stress of the
fluid, i.e. the plug is broken before transition commences. Once in transition and when
turbulent, the behaviour of the yield stress fluid is somewhat similar to a (simpler)
shear-thinning fluid. Finally, we have observed the shape of slugs during transition
and found their leading edges to be highly elongated and located off the central axis
of the pipe, for the non-Newtonian fluids examined.

1. Introduction
In this paper, we present results of an experimental study of the laminar, transition

and turbulent flows of a visco-plastic fluid in a cylindrical pipe (Hagen–Poiseuille
flow). There are the following number of motivations for this study:

(i) Fluids of shear-thinning type with a yield stress abound in industrial settings, as
well as some natural ones. Our particular motivation here comes from both the petro-
leum industry and the pulp and paper industry, where design/control of the inherent
processes often requires knowledge of the flow state at different velocities. Similar fluid
types and ranges of flows occur in food processing, polymer flows and in the transport
of homogeneous mined slurries. Although many of these industrial fluid exhibit more
complex behaviour (e.g. thixotropy, visco-elasticity, etc.), as noted by Bird, Armstrong
& Hassager (1987), the shear-dependent rheology is often the dominant feature.
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(ii) In line with the above, there is a demand from industrial application to predict
the Reynolds number (Re = UD/ν, where U is the average velocity, D is the diameter
of the pipe and ν is the kinematic viscosity), or other bulk flow parameter, at which
transition occurs, for a range of fluid types, so that different frictional pressure
closures may be applied to hydraulics calculations above/below this limit. One of
the such earliest attempts, and probably still the most popular, was that of Metzner
& Reed (1955). Perhaps the most obvious weakness with such phenomenological
formulae is that turbulent transition occurs over a wide range of Reynolds numbers
and not at a single number. For example, in careful experiments, Hof, Juel & Mullin
(2003) report retaining laminar flows in Newtonian fluids up to Re =24 000, whereas
the common observation of transition initiating in pipe flows is at Re ≈ 2000. Thus,
there is a difficulty with interpreting the predictions of phenomenological formulae,
many of which we note were either formulated before a detailed understanding of
transitional phenomena has developed. Although such a predictive guideline is a
worthy goal, and one we address in a companion paper, it is clear that a necessary
precursor to this is a detailed study of transition phenomena, which we provide here.

(iii) A third and most important motivation for our study is scientific. Since
Reynolds’ famous experiment (Reynolds 1883), transition in pipe flows has been an
enduring unsolved problem in Newtonian fluid mechanics. It is thus natural that there
have been far fewer studies of non-Newtonian fluids in this regime, either experimental
or numerical/theoretical. However, those studies that have been conducted for shear-
thinning visco-plastic fluids leave a large number of intriguing questions unanswered.
In the first place, experimental studies by Escudier & Presti (1996) using Laponite
suspensions and by Peixinho et al. (2005) using Carbopol solutions have revealed
interesting flow asymmetries in the mean axial velocity profile during transition,
which have been largely unexplained. These have been summarized by Escudier
et al. (2005).

Secondly, although there have been studies of turbulent flows of non-Newtonian
fluids there are few detailed studies characterizing the flow phenomena present during
transition. Here we focus on the occurrence of puffs and slugs and on an analysis
of turbulence statistics. The fluids used in this study are (a) Newtonian, (b) shear
thinning and (c) shear thinning with a yield stress τ y . We compare results between
fluid types as the complexity is increased.

Thirdly, yield stress fluids have an axial velocity profile in fully developed laminar
flow characterized by an unyielded (or ‘plug’) zone in the pipe centre. The radius
of the plug zone is dictated by a balance between the shear stress and the yield
stress of the fluid. With increasing flow rates the size of the plug diminishes but does
not vanish, theoretically adopting the role of a rigid solid for the base flow. One of
the remaining open questions with these fluids concerns the role of the plug during
transition.

Finally, questions arise related to the theoretical side of the problem, where
there have been a number of studies of shear instability in flows of visco-plastic
fluids, typically for Bingham fluids. Frigaard, Howison & Sobey (1994) studied
two-dimensional instabilities of plane channel Poiseuille flow, providing the correct
formulation of the stability problem and linearization at the yield surface, but
considered odd and even perturbations separately which is questionable for this
flow. A recent study by Nouar et al. (2007), who implemented the correct conditions
at the yield surface, suggests that plane Poiseuille flow is linearly stable at all Re, as is
Hagen–Poiseuille flow. Thus, the transitional flow problem is similar in this respect to
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that for a Newtonian fluid. Three-dimensional linear instabilities have been studied in
Frigaard & Nouar (2003) and transient growth phenomena in Nouar et al. (2007). A
key feature of the linear stability studies is that the plug region remains unyielded for
linear perturbations. This fact can lead to interesting mathematical anomalies. For
example, Métivier, Nouar & Brancher (2005) consider the distinguished asymptotic
limit of linear stability with small yield stress (vanishing slower than the linear
perturbation), which corresponds to a rigid sheet in the centre of a plane channel
and is linearly stable. They suggest that the passage to the Newtonian limit of a yield
stress fluid is ill defined insofar as questions of stability are concerned. These features
reinforce the fundamental interest in plug behaviour during transition, i.e. based on
the linear theory the flow is believed to be stable for all Re, but this linear theory
itself is based on the continued existence of the plug region.

Apart from the linear analyses, fully nonlinear (energy) stability results are derived
in Nouar & Frigaard (2001). As with the Newtonian fluid energy stability results
these are very conservative. For yield stress fluids the nonlinearity of the problem
is not simply in the inertial terms, but also in the shear stress and in the existence
of unyielded plug regions, which are defined in a non-local fashion even for simple
flows. This means that the gap between linear and nonlinear theories and between
theoretical prediction and experimental evidence is much wider than with Newtonian
fluids. Some effort to close this gap has been forthcoming in the form of computational
work, e.g. Rudman et al. (2004) have conducted direct numerical simulation (DNS)
studies with some success, but the need for more experimental study remains and is
addressed here.

For Newtonian fluids there is a significant body of experimental work that has
focused at flow structure in intermediate transitional regimes. Wygnanski and co-
workers (Wygnanski & Champagne 1973; Wygnanski, Sokolov & Friedman 1975)
found that flow disturbances evolve into two different turbulent states during
transition: puffs and slugs. They observed and described the evolution of localized
turbulent puffs and slugs in detail such as their shape, the way they propagate, their
velocity profiles and the turbulence intensities inside them. The puff is found when
the Reynolds number is below Re ∼ 2700 and the slug appears when the Reynolds
number is above Re ∼ 3000. Both the puff and slug are characterized by a change
in the local velocity in which the flow conditions are essentially laminar outside the
structure and turbulent inside. The puff and slug are distinguished from each other
by the abruptness of the initial change between the laminar and turbulent states. It
has been reported that for a puff, the velocity trace is saw-toothed while a slug has
a square form on velocity-time readings. Since these classical studies, many authors
have observed and measured puff and slug characteristics in Newtonian fluids. A
summary of reported values of the leading U� and trailing Ut edge velocities of puffs
and slugs are given in table 1, scaled by the mean flow velocity Ub.

Further attempts to characterize transition experimentally include the studies of
Bandyopadhyay (1986), Toonder & Nieuwstadt (1997), Eliahou, Tumin & Wyagnanski
(1998), Han, Tumin & Wyagnanski (2000) and Hof et al. (2003). Bandyopadhyay
(1986) reports streamwise vortex patterns near the trailing edge of puffs and slugs.
Darbyshire and Mullin (1995) indicates that a critical amplitude of the disturbance is
required to initiate transition and this value decreases with Re. Toonder & Nieuwstadt
(1997) performed Laser Doppler Velocimetry (LDV) profile measurements of a
turbulent pipe flow with water. They found that urms near the wall is independent
of Reynolds number. Eliahou et al. (1998) investigated experimentally transitional
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U�/Ub Ut/Ub Re Structure

Wygnanski & Champagne (1973) 0.92 0.86 2200 Puff
Wygnanski & Champagne (1973) 1.55 0.62 8000 Slug
Teitgen (1980) 1.40 0.73 2200 Puff
Draad & J. Westerweel (1996) 1.70 0.60 5800 Slug
Shan et al. (1999) 1.56 0.73 2200 Puff
Shan et al. (1999) 1.69 0.52 5000 Slug
Mellibovsky & Meseguer (2007) 1.57 0.68 3850 Slug

Table 1. Reported literature values of the leading and trailing edge velocities of a puff or a
slug in a flowing Newtonian fluid.

pipe flow by introducing periodic perturbations from the wall and concluded that
amplitude threshold is sensitive to disturbance’s azimuthal structure. Han et al. (2000)
expanded on the work of Eliahou et al. (1998) and advanced the argument that trans-
ition is related to the azimuthal distribution of the streamwise velocity disturbances
and that transition starts with the appearance of spikes in the temporal traces of the
velocity. In addition they found that there is a self-sustaining mechanism responsible
for high-amplitude streaks and indicate that spikes not only propagate downstream
but also propagate across the flow, approaching the pipe axis. Hof et al. (2004)
measured the velocity fields instantaneously over a cross-sectional slice of a puff
and showed that uniformly distributed streaks exist around the pipe wall and slower
streaks exist near the centreline in a puff. They show that the minimum amplitude
of a perturbation required to cause transition scales as the inverse of the Reynolds
number. There are of course many other experimental studies of Newtonian fluid
transition.

The gap between experimental and theoretical understanding of Newtonian shear
transition is drawing ever closer. The mid-1990s saw a revival of interest in linear
theories with the realization that stable linear modes could undergo prolonged periods
of (algebraic) growth before an eventual decay, and that these slowly varying solutions
may themselves be unstable. While early work looked for exact resonances, it was
later appreciated that due to non-normality of the linearized Navier–Stokes operator,
transient growth could occur for specific initial conditions without exact resonance
(see Reddy, Schmid & Henningson 1993; Trefethen et al. 1993; Chapman 2002 for
an overview of these developments). At the same time, self-sustaining mechanisms
were proposed by Waleffe and co-workers (Hamilton, Kim & Waleffe 1995; Waleffe
1997), by which energy from the mean flow could be fed back into streamwise
vortices, thus resisting viscous decay. Self-sustained exact unstable solutions to the
Navier–Stokes equations were found by Faisst & Eckhardt (2003) and by Wedin &
Kerswell (2004). Much current effort is focused at understanding the link between
these self-sustained unstable solutions and observed transitional phenomena, such as
intermittency, streaks, puffs and slugs (see, e.g. Eckhardt et al. 2007; Hof et al. 2004,
2005; Kerswell & Tutty 2007).

In assessing the literature on non-Newtonian fluid transition, it is important to
be specific about the types of fluid that one wishes to study. For example, there
is a relatively large literature on drag-reducing polymers (see, e.g. Draad, Kuiken
& Nieuwstadt 1998 and the review articles by Berman 1978 and White & Mungal
2008). Frequently, in such studies non-Newtonian features can be interpreted as
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a small deviation from the Newtonian behaviour, in particular where the drag
reduction is effected via visco-elastic additives. For the fluids we consider, viscometric
non-Newtonian effects are a dominant feature of the base laminar flow and we avoid
fluids in which visco-elasticity is very significant. Our focus is thus on generalized
Newtonian fluids. Simplistically, these are fluids in which the shear stress depends on
the strain rate through an effective viscosity η which is a function only of the second
invariant (γ̇ ) of the strain rate tensor

τ ij = η(γ̇ )γ̇ij . (1.1)

These fluids generally represent those in which shear rheology dominates. Many
industrial fluids fall into this class, at least as a first-order description. Well-known
rheological models include the Carreau–Yasuda, Cross, Casson, Bingham, power law,
Ellis and Herschel–Bulkley models. The two main features of such fluids are shear-
thinning behaviour (in which the effective viscosity η decreases with γ̇ ), and the
possible existence of a yield stress (a threshold in τ below which γ̇ = 0). Having
said this, it is of course impossible to eliminate entirely other rheological effects in
using real fluids. Xanthan is known to exhibit elastic effects in addition to its shear-
thinning behaviour (and shows drag reducing properties, see e.g. Escudier, Presti &
Smith 1999). Carbopol is often used as an experimental fluid for yield shear-thinning
behaviour, but at low shear structural thixotropic effects can be quite visible. Other
‘model’ lab fluids, such as Laponite, are also strongly thixotropic.

There are many studies of these types of fluids in pipe flow. For example, Metzner
& Reed (1955) considered a range of experimental data in establishing correlations
for frictional pressure losses. Similarly, Hanks & Pratt (1967) present results for yield
stress fluids. See also texts such as Govier & Aziz (1972) for an overview of this
type of closure model and applications. In the petroleum industry, non-Newtonian
pipe flow experiments are commonplace and conducted in order to continually evolve
the accuracy of hydraulic predictions (e.g. Shah & Sutton 1990; Willingham & Shah
2000), or in response to new fluid types that are being pumped (e.g. Guo, Sun &
Ghalambor 2004). In the mining industry, homogeneous slurries are often modelled
as visco-plastic shear-thinning fluids, numerous experimental studies of different flow
regimes have been carried out (e.g. Abbas & Crowe 1987; Turian et al. 1998),
and transitional flow predictions have been developed which are popular within that
industry (e.g. Wilson & Thomas 1985, 2006; Slatter 1999; Slatter & Wasp 2000). Many
of the approaches we have referenced above are targeted at accurate prediction of
frictional pressure losses, with transition simply being considered as the intermediate
step between fully laminar and turbulent flows. Thus, these do not study in a direct
way the phenomena present in the transitional regime.

In shear-thinning non-Newtonian fluids the change in friction factor is generally
much less abrupt on passing through transition (see e.g. various fluids tested in
Metzner & Reed 1955; Escudier et al. 1999). Thus, although still frequently used,
and attractive since easily measurable in hydraulic situations, the accuracy of the
friction factor method is certainly diminished. Other common detection methods for
Newtonian fluids are based on observations of centreline velocity (as there is a large
shift between laminar and turbulent profiles), or the r.m.s. velocity fluctuation

urms =
√

u′2, (1.2)
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where u(t) = u + u′(t) is the local velocity, or on the turbulence intensity I

I =
urms

u
. (1.3)

Park et al. (1989) conducted LDA measurements for both laminar and turbulent flows
of an oil-based transparent slurry with visco-plastic behaviour. They report that, due
to the yield stress, there was very little difference between turbulent and laminar
velocity profiles, hence detecting transition via the centreline velocity was ineffective.
They advocated use of the turbulent intensity close to the wall, e.g. at 80 % of the
radius, which is also adopted by Escudier et al. (1999). On the other hand, Peixinho
(2004), Peixinho et al. (2005) do manage to identify transition from centreline velocity
data, although the detection is clearer for the fluids used other than Carbopol.

Flow asymmetries in the mean velocity profiles were first reported by Escudier
& Presti (1996), who studied the flow of Laponite solutions in laminar, transitional
and fully turbulent flows. They report asymmetry in the range Re ∈ [1300, 3000].
However, under all flow conditions they find that thixotropic effects are observable
and the fluid is rarely at its equilibrium shear rheology, except in a very thin wall
layer. This clouded any clear interpretation of the asymmetries. Peixinho (2004)
conducted pipe and annular flow experiments for CMC and Carbopol solutions. In
the transitional regime Peixinho (2004) did not report observing flow asymmetries,
although these were apparently evident and are reported later in Peixinho et al. (2005).
It is worth noting that asymmetric velocity profiles have been observed for Newtonian
fluid flows, but under different flow conditions (see Leite 1959).

Peixinho et al. (2005) suggest that for yield stress fluids the transition takes place
essentially in two stages. In the first stage the turbulence intensity is at laminar levels
on the pipe centreline while larger nearer the wall. It is unclear whether or not the plug
is broken or intact, but it is suggested that due to the large fluctuations in effective
viscosity, flow instabilities generated near the wall could be damped nearer the centre
of the pipe. The aspect of flow asymmetry in transition is returned to by Escudier
et al. (2005). The authors summarize the work of Escudier & Presti (1996), Peixinho
et al. (2005) and a third independent study, in all of which asymmetry was observed
in the mean velocity profiles. The authors discuss the possible effect of the Coriolis
force on flow asymmetry (following Draad & Nieuwstadt 1998), concluding that for
the more viscous non-Newtonian fluids the Ekman number is simply too large for
this to be a viable explanation. Other possible sources of experimental influence are
also examined, with the conclusion that the asymmetry has fluid mechanics origins
and is not due to imperfections in either the apparatus or measurement technique.

An outline of our paper is as follows: In § 2 we describe the experimental flow loop
and the LDV system used to characterize the radial velocity profiles for three different
fluid systems. Here we measure velocity profiles across the diameter of the pipe as
a function of flow rate. We span the flow rate ranges so that we observe laminar,
transitional and turbulent behaviours. In § 3 we present the results in two subsections.
In the first subsection, we describe phenomenologically the behaviour of the different
fluids undergoing transition. In this subsection we characterize the flow field both
using high-speed video images and simple measurements of the fluctuations of the
instantaneous velocity measurements. In the next subsection, we characterize the
transition to turbulence using higher order statistical methods. In § 4 we summarize
the evidence for the breakup of the plug region before transition. In § 5 we highlight
the major findings and attempt to give some physical insight into our experimental
observations.
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Figure 1. Schematic view of the experimental setup: R1,2: fluid reservoirs, P: pump, FM:
flow meter, PT1,2: pressure transducers, FT: fish tank, CCD: digital camera, PB: laser Doppler
velocimetry probe, PMT: photomultiplier and BSA: burst spectrum analyzer.

2. Experimental setup and procedures
All results reported are from tests performed in a 10 m long flow loop with an

inner diameter of 50.8 mm. The setup is illustrated schematically in figure 1. The
flow is generated by a variable-frequency-driven screw pump fed to a carbon steel
inlet reservoir R1 of approximately 120L capacity to an outlet reservoir R2 of the
same capacity. The pump can provide a maximum flow rate of ≈ 22 l s−1, which is
equivalent to a maximal mean flow velocity of ≈ 10 m s−1. Two honeycomb sections
are placed inside the reservoir R1 before the tube inlet in order to suppress any
swirl or other fluid entry effects. We used a Borda style entry condition in which
the pipe extended backwards approximately 50 cm into the tank. Two honeycomb
elements were inserted into this section. The fluid reservoir R2 is pressurized to
damp mechanical vibrations induced by the pump motor and a flexible hose is used
between the pump and reservoir in order to diminish flow pulsations. The flow channel
is constructed of 16 identical sections, 61 cm in length each, joined with flanges and
aligned horizontally with the aid of a laser.

The test section of the pipe (placed at about 5.5 m downstream) is fitted with a
‘fish tank’ FT which consists of a rectangular transparent acrylic box filled with an
index-matched fluid (glycerol) in order to minimize the effects of refraction. Velocity
measurements are made by using an LDV system from TSI instruments (www.tsi.com).
The LDV comprises a 400 mW argon-ion laser (wavelength 457–514 nm), a two-
component probe (PB) housing the transmitting and receiving optics, a colour
separator and a burst spectrum analyzer (BSA). The probe is mounted on a three-axis
translational stage with a spatial resolution of 10 μm. The working fluids are seeded
with silver coated hollow glass spheres, 10 μm in diameter, in order to enhance the
LDV signal. The LDV optical parameters are as follows:

(a) the probe beam diameter is 2.82 mm
(b) the beam separation at its front lens is 50 mm
(c) the focal length of receiving lens is 362.6 mm
(d) the diameter of the measurement volume is 0.0858 mm (measured in air).
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Two pressure transducers (PT1,2) are located near the inlet and outlet of the
flow channel (Model 210, Series C from www.gp50.com). These are bonded strain
gauge transducers with internal signal conditioning to provide a Vdc output signal
in direct proportion to the input pressure. The accuracy of each transducer is
0.02 % of the full scale and they were calibrated with an externally mounted
pressure gauge. Pressure readings were averaged over 150 s and used to estimate
the radius of the plug (see (4.1)). Flow rates were estimated using two methods:
(i) using an electromagnetic flow metre (FM) installed near the outlet reservoir (see
figure 1); (ii) by numerically integrating the measured axial velocity profiles. The latter
estimate is used to calculate the relevant flow parameters reported throughout the
paper.

Before proceeding it is instructive to estimate if the flow is fully developed at this
measurement location. The case to consider is that of a laminar flow of a Newtonian
fluid as it is widely known that the entry length for turbulent flows (Nukuradse
1932; Laufer 1952; Perry & Abell 1978; Doherty et al. 2007) and for flows with
non-Newtonian fluids (Bogue 1959; Chen 1973; Soto & Shah 1976; Froishter
& Vinogradov 1980; Bewersdorff 1991) is shorter. For the laminar case, Durst
et al. (2005) report that it is widely accepted that the entry length Le/D scales with
Re/30; there is however a wide variation in this estimate (see Durst et al. 2005; Poole
& Ridley 2007). With this, at Re =3000 the entry length in our apparatus is roughly
Le/D = 100. This is significantly shorter than the position of our measurement
point, i.e. Le/D =108. In addition to satisfying this criterion, we examined a second
criterion to establish if the flow was fully developed. Like Durst et al. (2005) and
Poole & Ridley (2007), we examined the measured centreline velocity and compared
this to an estimated velocity using the pressure drop and viscosity of the fluid.
We found that for all cases tested there was less than a 1% deviation from these
results.
The experimental procedure consisted of the following steps:

(a) Each fluid tested was mixed in situ by circulating the fluids through the flow
channel for 5–6 h. The test fluid was then allowed to rest for 4–5 days so that any
entrained air bubbles may be dissipated. A fluid sample was then obtained from the
reservoir tank and used for subsequent rheological evaluation.

(b) During each run, the temperature of the fluid varied by less than 1 ◦C. No active
measures were made to control temperature in this experiment. At the start of an
experimental sequence, the desired flow rate was set and the flow loop was then run
for a period of time until the temperature stabilized. Once stabilized data acquisition
commenced. In this case we record both the volumetric flow rate and instantaneous
pressure at a sampling rate of 500 Hz.

(c) The velocity profile was measured stepwise across the diameter of the pipe in
1.25 mm increments. At each radial position, the flow was sampled for approximately
150 s at an average rate of 1000 Hz. This data was also used to estimate the local
strain rate γ̇ . To do so the derivative was estimated by using a second-order finite
difference scheme with a step size of 1.25 mm (2.5 % of the diameter of the pipe),
between adjacent nodes. The time-average value at each nodal point was estimated
from approximately one-hundred thousand readings; the coefficient of variation was
much less than 1%. Given this large number of data points, the difference between
the averages of velocity between adjacent points was statistically significant and the
error on this time average derivative is low.

(d) At the end of the traverse a fluid sample was obtained, the flow rate increased
and the measurement traverse repeated.
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Concentration Velocity Ub

Fluid (wt%) (m s−1) ReG

Glycerin 80 0.37–1.49 731–4442
Glycerin 65 0.06–1.95 342–14180
Xanthan 0.05 0.17 1984
Xanthan 0.1 0.38–2.02 1701–24746
Xanthan 0.2 0.46–2.59 451–5070
Xanthan 0.2 0.28–3.75 352–11272
Carbopol 0.05 (6.7 pH) 0.14–1.49 356–10960
Carbopol 0.08 (7.1 pH) 0.39–2.92 170–5134
Carbopol 0.10 (6.9 pH) 0.31–3.50 42–3309
Carbopol 0.10 (6.6 pH) 0.11–4.59 6–6032
Carbopol 0.15 (6.8 pH) 0.13–4.84 2.7–2953

Table 2. A summary of the experimental conditions tested. For each fluid, at least seven
different bulk velocities were chosen to cover the range indicated in the table.

All the fluids used in our experiments were transparent, allowing both LDV flow
investigation and direct high-speed flow imaging. In total 11 different fluids were
tested. The experimental limits such as the mean velocities, concentrations and the
corresponding generalized Reynolds numbers (denoted by ReG), for all the fluids we
have tested are summarized in table 2. The values given for each fluid represent the
minimum flow rate (fully laminar regime) and the maximum flow rate (fully developed
turbulent regime) conditions. The Reynolds number may be defined in a number of
ways for non-Newtonian fluids. We have defined a generalized Reynolds number by

ReG =
4ρ

R

∫ R

0

ū(r)

η(γ̇ (r))
r dr, (2.1)

where ρ and η are the density and effective viscosity of the fluid. The latter depends
on the strain rate of the base flow γ̇ (r), which is calculated locally from the mean
axial velocity. For a Newtonian fluid, ReG = Re, and algebraic relations between ReG

and other commonly used non-Newtonian Reynolds numbers may be easily derived.
For laminar flows some simple algebraic manipulations yield the expression

ReG =
4ρu2

c

R|px | . (2.2)

We note here that both Xanthan and Carbopol solutions may exhibit elasticity at
low shear rates, but for the ranges of flow rates considered in our experiments, it is
the shear rheology that dominates. As a result, in this work the Xanthan solutions
used are modelled as a power-law fluids:

τ = κγ̇ n; η = κγ̇ n−1. (2.3)

Although the flow curve for Xanthan can be better fitted by the Carreau–Yasuda
model or the Cross model, the power-law model is preferred for its simplicity in
calculations.

The yield stress fluid, Carbopol, is characterized as a Herschel–Bulkley fluid

τ = τ y + κγ̇ n; η = τ y γ̇
−1 + κγ̇ n−1: τ > τ y. (2.4)

The parameters τ y , κ and n are commonly referred to as the fluid yield stress,
consistency and shear-thinning (power-law) index, respectively.
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U (m s−1) γ (s−1) τ y (Pa) κ (Pa·sn) n ReG

0.11202 0.1–24 2 2.05 0.36 5.5
0.4622 0.1–87 1.5 2.01 0.40 67
1.2076 1–220 1.4 1.59 0.43 378
2.0461 5–414 1.3 1.20 0.48 937
2.3218 5–472 1.2 0.92 0.53 1160
3.1146 5–657 1 0.65 0.60 1735
3.9005 5–1261 0.6 0.35 0.65 2920
4.3967 5–1559 0.4 0.20 0.70 4488

Table 3. Flow conditions and Herschel–Bulkley parameters for 0.1 % Carbopol.
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Figure 2. Rheograms for 0.2 % Xanthan gum solution, described by the power-law model:
(a) κ = 0.11 Pa·sn, n= 0.65; (b) κ = 0.13 Pa·sn, n= 0.56.

The shear rheology of the samples was measured for each fluid sample at the
same temperatures as the fluids in the flow loop. Rheological measurements were
performed on a controlled-stress rheometer (CVOR 200, from Bohlin, now Malvern
Instruments) with a 1◦ 40 mm cone and plate geometry and 25 mm vane tool. A
standard v25 (four blades, vane length 42 mm) vane geometry (www.malvern.co.uk)
was employed in these tests and the yield stress was determined by a stress ramp
method (Nguyen & Boger 1985). The vane tool was used for measurements of the
yield stress because wall slip effects are known to be absent for this geometry. For the
viscosity measurements in a high shear rate range (which corresponds to most of our
experimental domain) the cone and plate geometry was used. The empirical constants
describing the rheological were determined by comparison to both this rheogram and
to the laminar velocity profiles measured in the pipe. Degradation is apparent in the
rheological properties of the structured fluids. Table 3 details the change in rheology
after every flow rate for 0.1 % Carbopol.

Finally, it is widely known that a weakness of both the power law and Herschel–
Bulkley models is that there is no high-shear limiting viscosity. Thus, parameter fitting
from the flow curve can give different results depending on the range of strain rates
used for the fit. Here we fit model parameters from the fluid samples taken before each
experiment and use flow curve data that covers the approximate range investigated
in the experiment. Figure 2 provides an illustration of how using different strain rate
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ranges, for the same fluid, can result in different parametric fits for the same Xanthan
solution. Tables of fitted parameters for each experiment reported are given in the
Appendix. The parameters fitted obviously have no influence on the results reported
here; these are included for completeness and as an aid to future comparisons with
computational and theoretical approaches.

Experimental uncertainties caused by small imperfections of the pipe, temperature
gradients in the room or degradation of the tested fluids generally have a smaller effect
on the calculated ReG than using incorrect rheological parameters. By ‘incorrect’, we
mean that either the parameter fit is made from data covering the wrong range of
strain rates, or the fluid sample is taken from an unyielded/stationary zone in the end
reservoirs (as opposed to the yielded parts), or that care is not taken to cross-check
the rheological data against the pipe flow velocity profile (in laminar regime only).

The largest errors almost certainly arise in the yield stress. In reality, yielding
behaviour is observed over a range of stresses and specifying a single yield stress
value is simply a fitting parameter. This range is estimated by using the stress ramp
method with vane rheometer measurements. For any given yield stress fitting the
other rheological parameters to the flow curve data is a robust procedure. Having
determined ranges of rheological parameters we then compare normalized velocity
profiles from the LDV measurements with those calculated from the rheological
model (which are dimensionlessly parameterized by n and rp), to determine the final
parameters.

Evidently, many different errors contribute to the value of ReG. A reasonable
error estimate for ReG is obtained by comparing the ReG that is calculated from
the rheological parameters, constitutive law and velocity profile, i.e. (2.1), with that
computed from the pressure drop and centreline velocity, i.e. (2.2). For different
concentrations of Carbopol, the difference between these two ReG calculated for
the same flows is 1–2 % at smaller Reynolds numbers and increases to 10–15 %
at higher Reynolds numbers close to transition. It is interesting to note that at
low shear values, where errors in yield stress dominate, the contributions to ReG in
calculating the integrand in (2.1) are smallest, due to the large effective viscosity. The
ReG calculated with pressure drop underestimates the true value of ReG because the
entrance pressure losses are included. For comparison, the difference between these
two values of ReG for glycerin is about 1–5 % for laminar flows.

Note that as velocity profiles become turbulent, due to nonlinearity in the
constitutive laws, the effective viscosity of the averaged velocity profile may not
be an accurate measure of viscous effects in the flow and a discrepancy between
(2.1) and (2.2) is inevitable. More concisely, deriving (2.2) relies on a constitutive
law relating the averaged velocity profile (via an effective viscosity) to the mean
shear stresses and hence pressure drop. The constitutive relation is not known for
the turbulent flow. This same difficulty arises with other commonly used generalized
Newtonian fluid Reynolds numbers, which are typically based on the laminar flow
characteristics, e.g. the Metzner–Reed Reynolds number.

As with ReG, we can either evaluate rp directly from the rheology and velocity
profile fit (as we have used in the figures and tables presented below), or we can use
the yield stress and measured pressure drop. Since both methods are vulnerable to
errors in the yield stress, the level of precision using either estimate is comparable.
However, rp calculated from the pressure drop underestimates the true value because
the entry length losses are included in the pressure drop measurement. Values of rp

are about 5–20 % lower than those calculated from the rheology and velocity profile
fit.



108 B. Güzel, T. Burghelea, I. A Frigaard and D. M. Martinez

1.0

(a)

(c)

(b)

0

r/R

r/R

0

0

1.0

0

0

0

0

0

1.0

0

0

0

0

0

–1.0 –0.5 0 0.5 1.0

–1.0 –0.5 0 0.5 1.0

r/R
–1.0 –0.5 0 0.5 1.0

u/uc

u/uc

Figure 3. The time averaged velocity profiles for the three different fluids tested. (a) 65 %
glycerin at ReG =633 (�), 2573 (�) and 10531 (�); (b) 0.2 % Xanthan gum at ReG =809
(�), 1185 (�), 2244 (�), 2542 (�) and 3513 (�) and (c) 0.15 % Carbopol at ReG = 561 (�),
1120 (�), 1750 (�), 1804 (�) and 2953 (�).

3. Results
3.1. Phenomenological observations

Before proceeding to the main findings, it is instructive to first examine representative
velocity profiles for all fluids and flow states measured. To this end, we plot the time-
averaged velocity profiles as a function of ReG (see figure 3). At each radial position,
over one-hundred thousand instantaneous velocity measurements were used in the
ensemble average and the confidence interval for each point is very small. It should be
noted that the results have been made dimensionless by scaling the ensemble average
with the centreline velocity uc. Under laminar conditions, that is with ReG < 1700,
the fully developed laminar profiles are included in these graphs as the solid lines.
This was performed in order to ascertain the validity of our results. For the higher
flow rates, we present cases for both transitional and turbulent flows. Dashed lines
are drawn to highlight an apparent asymmetry in the measurements. The dashed
lines were constructed by averaging the data at equivalent radial positions on either
side of the central axis. The asymmetry is apparent for the non-Newtonian cases and
disappears once full turbulence is achieved. It is worth noting that the asymmetry is
systematic, i.e. these data were taken from time-averaged data and the asymmetry is
consistently in the same part of the pipe for the same fluid. This is highlighted in
figures 4 and 5 where experimental conditions are replicated resulting in a similar bias
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Figure 4. The time-averaged velocity profiles for 0.2 % Xanthan gum. These data are from
replicate tests obtained from similar experimental conditions (a) ReG = 858 (�), 1218 (�),
1900 (�), 2363 (�) and 3244 (�); (b) ReG = 809 (�), 1185 (�), 2244 (�), 2542 (�) and 3513
(�).
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Figure 5. The time-averaged velocity profiles for 0.1 % Carbopol. These data are from
replicate tests obtained from similar experimental conditions. (a) ReG = 378 (�), 937
(�), 1160 (�), 1735 (�) and 2920 (�); (b) ReG = 397 (�), 914 (�), 2001 (�), 2238 (�) and 2612
(�).

in the result. It should be noted in the figures that the asymmetry shows no directional
dependence. For different fluids the profiles may be skewed in either direction. This
persistence runs contrary to the intuitive notion that transitional flow structures, when
ensemble averaged over a suitably long time, should occur with no azimuthal bias.
A similar asymmetry has been reported by other groups in their experiments (see
e.g. Escudier & Presti 1996; Escudier et al. 2005; Peixinho et al. 2005). Our initial
reaction to the asymmetry was to look for and eliminate any directional bias in
the apparatus or in the flow visualization. However, even after extensive precautions
the asymmetry still persists. A similar result is observed in the radial profiles of the
local r.m.s. of the velocity fluctuation for the non-Newtonian fluids. A representative
case is given in figure 6 for a 0.2 % Xanthan gum solution. One can notice from
figures 4(a) and 6 that the peak asymmetry in urms profiles is on the opposite side to
the asymmetry seen in mean velocity profiles.
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Figure 6. Local r.m.s. velocity and mean turbulence intensity profiles for 0.2 % Xanthan
Gum; at (a) ReG = 858, (b) ReG = 1218, (c) ReG = 1900 and (d ) ReG = 3244.

Figure 7 plots the evolution of the turbulent intensity with ReG, both at the
centreline and at radial positions r/R = ±0.75. Other radial positions could have
been displayed, but we chose to show these three as it clearly defines the phenomena
that we wish to discuss. To begin, the first observation that can be made is that for
Newtonian fluids, (see figure 7a), in the laminar regime we see a decay in turbulent
intensity as flow rate is increased. This decay is due to having approximately the
same magnitude of noise in the system while increasing mean velocity. This is valid
for all of the experiments. On transition there is a sharp change in turbulent intensity
that occurs across the pipe section simultaneously, i.e. at the same ReG. After a
rapid increase through transition the turbulent intensity relaxes as we enter the fully
turbulent regime. For the structured fluids, transition does not involve a simultaneous
and sharp increase in turbulent intensity, across the pipe radius. Instead in figures 7(b)
and 7(c) we observe that the turbulent intensity begins to increase at r/R = ±0.75,
at markedly lower Reynolds numbers than at the centreline. A pattern that we
noticed that is generally found for the structured fluids tested is that the slope of the
curve near transition was rarely negative. This observation will be confirmed below
through direct visual observation of turbulent puffs through high-speed imaging. In
this study it was difficult to classify the turbulent spot as either a puff or a slug.
This is not a unique finding as other research groups without active disturbance
control mechanisms report similar findings (Rudman et al. 2004). As a result, in the
subsequent text we use the term puff and slug synonymously. A simplistic explanation
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Figure 7. Turbulence intensity at r/R = 0 (–◦–), r/R = −0.75 (–�–) and r/R = 0.75 (–�–)
for (a) 65 % glycerin, (b) 0.2 % Xanthan gum and (c) 0.1% Carbopol.

for this different behaviour is that the effective viscosity is usually significantly larger
close to the centreline for shear-thinning fluids in laminar flow.

Apart from measuring the axial velocity, we also visualized the flow via seeding
particles and a two-coloured art dye, for which the colour changes with the orientation
of particles. This enables qualitative evaluation of the flow, i.e. the particles in turbulent
structures are of a different colour than the ones in laminar regimes. The images are
then processed and some features of the turbulent spots (puff/slug) are derived from
these images. The recording station is placed at about 7.6 m downstream. Our imaging
system consisted of a Mega Speed MS70K type high-speed video camera (504 × 504
pixel spatial resolution with a maximum framing rate of 5200 frames s−1) mounted
with a 25 mm lens. A typical sequence of images are shown in figure 8 for 0.1 %
Xanthan. This is a representative figure which was recorded at 400 frames s−1. The
flow in this case proceeds from left to right. In figure 8(a)–(k), a turbulent puff is
passing the point of observation causing mixing of the tracer particles. This results in
a grainy image due to the change in mean orientation, i.e. reflectance, of the tracer
particles. In figure 8(k ), the trailing edge of the puff is observed, and the flow is once
again laminar after the puff has passed. A second example from a Carbopol puff is
illustrated in figure 9.

With these images we attempted to characterize the size and velocity of the leading
and trailing edges of the puff by an object tracking method. We have also produced
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Figure 8. Instant puff images taken for 0.1 % Xanthan at ReG = 2236 at different time
instants: (a) t = 342.5 ms, (b) t = 667.5 ms, (c) t = 842.5 ms, (d) t = 915 ms, (e) t = 1005 ms,
(f) t = 1165 ms, (g) t = 1207.5 ms, (h) t = 1290 ms, (i ) t = 1675 ms, (j ) t = 4337.5 ms, (k )
t = 4377.5 ms and (l ) t = 4527.5 ms.
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Figure 9. Instant puff images taken for 0.075 % Carbopol at ReG =1850 at different time
instants: (a) t =130 ms, (b) t = 225.5 ms, (c) t =255.5 ms, (d) t = 320 ms, (e) t =422.5 ms,
(f) t = 447.5 ms, (g) t = 497.5 ms, (h) t =600 ms, (i ) t = 755 ms, (j ) t = 1117.5 ms, (k )
t = 1155 ms and (l ) t = 1187.5 ms.
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Figure 10. Space–time plot for 0.65 % glycerin at ReG = 2183: (a) obtained from raw flow
images and (b) obtained from filtered, background subtracted and binarized images. The puff
length is ∼4.35 m. The image sequence consisted of 4100 frames.
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Figure 11. Space–time plot for 0.05 % Xanthan at ReG = 1984: (a) obtained from raw flow
images and (b) obtained from filtered, background subtracted and binarized images. The puff
length is ∼2.5 m. The image sequence consisted of 3650 frames.

spatio-temporal plots of the images. Here the images are filtered and the variation
of grey-scale intensity at one axial position is reported as a function of time (see
figures 10–12). What is clear in this sequence of images is that an asymmetry is
evident in the Carbopol example. The leading edge of the puff is elongated, in
comparison to the Newtonian case, and is located near the wall.
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Concentration Ub

Fluid (wt%) (m s−1) uc/Ub ReG Ul/Ub Ut/Ub �puff /D

Glycerin 0.65 0.247 2 2143 1.73 0.76 86
Glycerin 0.65 0.252 2 2183 1.77 0.74 86
Glycerin 0.65 0.272 2 2357 1.73 0.74 88
Xanthan 0.05 0.165 1.98 1984 1.77 1.18 49
Xanthan 0.10 0.501 1.92 2236 1.73 1.17 52
Xanthan 0.20 1.185 1.72 1940 1.62 1.18 47
Carbopol 0.05 (pH 6.7) 0.927 1.78 2092 1.56 1.14 30
Carbopol 0.05 (pH 6.7) 0.968 1.78 2256 1.57 1.20 28
Carbopol 0.08 (pH 7.1) 1.514 1.73 1850 1.59 1.22 33
Carbopol 0.08 (pH 7.1) 1.576 1.73 2045 1.61 1.22 32
Carbopol 0.10 (pH 6.6) 2.184 1.69 2038 1.54 1.20 35
Carbopol 0.10 (pH 6.6) 2.266 1.69 2195 1.54 1.22 32

Table 4. Puff/slug characteristics for glycerin, Xanthan and Carbopol solutions. In this table
we define Ul as the velocity of the leading edge and Ut as the velocity of the trailing edge.
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Figure 12. Space–time plot for 0.075 % Carbopol at ReG = 1850: (a) obtained from raw flow
images and (b) obtained from filtered, background subtracted and binarized images. The puff
length is ∼1.69 m. The image sequence consisted of 320 frames.

In table 4, we report typical sizes and velocities of puff from these images. For each
fluid, around 2–4 puffs are analysed to produce table 4. With regards to the velocities
we report separately the velocities of the leading and the trailing edges. These are
measured in three different locations on the edges, namely at r/R = 0 and r/R = ±0.75.
The fourth column in table 4 represents the centreline velocity in laminar regime just
before the first puff is seen. What is evident from the data is that our estimates of the
leading edge velocities for the non-Newtonian fluids are quite comparable to those
measured for glycerin, as well as to those measured for Newtonian fluids by other
investigators (see the summary in table 1). In contrast, the trailing edge velocities for
the non-Newtonian fluid appear to be significantly faster than those for Newtonian
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fluids. One possible interpretation of this is that the leading edge propagates by
the same mechanism in all these fluids, i.e. controlled by spreading of turbulence
structures within the puff, whereas the trailing edge is affected by relaminarisation,
and hence the fluid rheology. Regardless of the correctness of this interpretation,
the data suggest that puffs in the non-Newtonian fluids will spread axially at a
significantly slower rate than those in Newtonian fluids. Another observation noted
for the Carbopol solutions is that the elongation of the leading edge gets smaller
with decreasing concentrations of Carbopol, i.e. the tip that we see in figure 12 is
both reduced and gets closer to the centreline. It is also worth commenting that
since the velocity profiles of shear-thinning fluids are flatter than Newtonian profiles,
the difference between laminar and fully turbulent centreline velocities is reduced.
Hence use of centreline velocity measurements to identify puff/slug occurrence does
not give the same distinct ‘signatures’ as for Newtonian fluids. Therefore, rather than
distinguishing between puff and slug, we simply use the term puff. Finally we comment
that although we have made estimates of puff size, it is difficult to interpret these as
it is highly dependent on the location of its origin and the time to the observation
point – this is highly variable. We report these values here for completeness.

To summarize our observations, we measured the axial velocity as a function of
radial position using LDV of three different classes of fluids undergoing Hagen–
Poiseuille flow. We find that for the non-Newtonian fluids tested there is a persistent
asymmetry in the velocity profiles present during transition. This asymmetry is also
seen in r.m.s. profiles. Symmetrical flows were found for both laminar and fully
turbulent cases. These observations were confirmed using high-speed imaging. No
physical explanation is given at this point. We do, however, attempt to quantify
transition more precisely by presenting a more in-depth statistical analysis of these
results. We do so in the following subsection.

3.2. Statistics of weak turbulence

Landau & Lifschitz (1987) indicate that turbulent flows are traditionally characterized
by random fluid motion in a broad range of temporal and spatial scales. In this section
we attempt to characterize these scales using a number of different statistical measures
given by Frisch (1995). By doing so we attempt to further characterize the differences
in the behaviours of these three classes of fluids during transition.

To begin with, the first statistical measure we use is an autocorrelation function
C(τ ) defined by

C(τ ) =
< u(t)u(t + τ ) >τ

u2
rms

(3.1)

and determined using the LDV data. This parameter is a measure of the time over
which u(t) is correlated with itself. In other words, C(τ ) is bounded by unity as τ

approaches zero and by zero as τ → ∞, because a process becomes uncorrelated
with itself after a long time. We report the autocorrelation function as a function of
ReG and the radial position in the pipe. Representative results of this curve for the
three fluids are given in figures 13–15. Before we proceed to interpret these figures we
must spend some time explaining how the data is represented. Each figure is given as
three panels, i.e. at three different radial positions. Within each panel four data sets
are presented representing four different Reynolds numbers. The data series labelled
(1) and (2) represent laminar flow while (3) is in transition and (4) in turbulence.
With regards to (1), which is at the lowest ReG, in each of the panels the velocity
signal is probably dominated by high frequency noise which results in a fast decay
of C(τ ) with a characteristic decay time which we find to be of the order of the
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Figure 13. Correlation functions for a 80 % glycerin solution at three different radial positions
(a) r/R = −0.75, (b) r/R = 0 and (c) r/R = 0.75. The data sets are: (i) Re = 1174, (ii) Re = 1737,
(iii) Re = 2201 and (iv) Re = 3546.

inverse data rate of the signal. Proceeding through (4) we find the fully turbulent state
characterized by rapid decay of the autocorrelation to the noise level.

A striking difference is found in curve (2) in comparison to the other curves. We
observe that there are plateaus in these curves, for some radial positions for each of
the fluids, e.g. at C(τ ) ∼ 0.4 for both r/R = ±0.75 in the case of the Carbopol solution.
Although this data was obtained in a region which we define as laminar, it is clear
that there are some weakly correlated structures at this position in the pipe. For the
Newtonian fluid, the plateau in the autocorrelation is at a lower value than that for
the non-Newtonian fluids and is visible also at the centreline. For the non-Newtonian
fluids the plateau is strongly attenuated at the centreline, but evident at the radial
positions r/R = ±0.75. Using Taylor’s frozen flow hypothesis (Taylor 1938) we may
estimate the axial length scale of these structures to be ∼10−1 m, being longer for the
Newtonian fluids than for the non-Newtonian fluids. This is significantly lower than
the size of the puffs and slugs we report in table 4. We also comment that asymmetry
is observed in many of the autocorrelation curves.

The second statistical measure we examined is the probability distribution of the
velocity fluctuations. Again we report these results at three different radial positions
for a number of ReG (see figure 16). Like the autocorrelation, we present the data
in three panels representing the different radial positions: at each radial position a
number of different ReG numbers are displayed. Each data set (roughly 105 velocity
events were accounted for in the statistics) is normalized by the maximum count and
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Figure 14. Correlation functions for a 0.2 % Xanthan solution at three different radial
positions: (a) r/R = − 0.75, (b) r/R = 0 and (c) r/R =0.75. The data sets are: (i) ReG = 858,
(ii) ReG =1218, (iii) ReG = 2363 and (iv) ReG = 5736.

plotted against the reduced variable [u(t) − Ū ]/urms . Clearly, there is no statistical
difference in these probability distributions when compared at different ReG at similar
radial positions, or at different radial positions and with similar ReG. This finding
holds for all classes of fluids tested.

Although intermittent flow behaviour is observed during our experiments in both
pre-transitional and fully developed turbulent regimes, the physics underlying the two
phenomena is substantially different. Whereas in the first case it is probably due to
the emergence and dynamics of large-scale flow structures, the second case remains
an open problem in fluid dynamics. In order to get a flavour of how non-Newtonian
fluid rheology influences the emergence and magnitude of intermittency, we focus
on higher order statistical flow properties for each of the three fluids under study,
corresponding to the largest value of Re investigated.

At this point we turn our attention to the main findings in this section, an
examination of the intermittency of transitional flow. An intriguing and partially
understood feature of inertial turbulent flows is the emergence of intermittency
which, simplistically speaking, manifests itself by ‘rare’ velocity bursts. In the case
when a complex fluid is used, it is even less well understood how the non-Newtonian
fluid rheology influences this phenomenon. Although the signature of this effect is
somewhat visible in the tails of the probability distribution functions displayed in
figure 16, a more systematic analysis requires the calculation of the velocity structure
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Figure 15. Correlation functions for a 0.1 % solution Carbopol at three different radial
positions (a) r/R = − 0.75, (b) r/R = 0 and (c) r/R = 0.75. The data sets are: (i) ReG =397,
(ii) ReG = 914, (iii) ReG = 2238 and (iv) ReG = 3309.

functions ξk , defined by

ξk(t) = 〈|u(τ + t) − u(τ )|k〉τ , (3.2)

as given by both Lesieur (1990) and Frisch (1995). In a fully developed and
homogeneous turbulent flow, the Kolmogorov theory in which intermittency effects
are not accounted for predicts

ξk

ξ3

=
k

3
. (3.3)

Thus, the magnitude of the intermittent effects can be quantified by the deviations
from the Kolmogorov scaling. In the Newtonian case and in a fully developed
turbulent regime the intermittency is highest away from the centreline (see figure 17)
whereas in the non-Newtonian case, the intermittency level is similar at each of the
radial positions we have investigated. This finding suggests that in the transitional
regime, the yield stress fluid behaves simply as a shear-thinning fluid and the effect of
the plug at this point should therefore be considered as negligible. Care must be taken
when interpreting this figure as we are not in fully turbulent flow. The Kolmogorov
scaling is included in this figure for illustrative purposes. The message of this figure
is that the structured fluids, according to this statistical measure, behave similarly in
transition.
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Figure 16. Velocity statistics for a 0.1 % Carbopol solution at three different radial positions
(a) r/R = −0.75, (b) r/R = 0 and (c) r/R =0.75. The symbols are: right triangles (�) ReG = 397,
left triangles (�) ReG = 914, up triangles (�) ReG = 2238, circles (•) ReG = 3309.

This finding suggests that in the transitional regime, the yield stress fluid behaves
simply as a shear-thinning fluid and the effect of the plug at this point should be
considered negligible. This results from the fact that the size of the plug is below our
detection limit.

4. The plug region during transition
For yield stress fluids the role of the plug region in retarding transition is largely

unknown. If one interprets the yield stress fluid to be fully rigid below the yield stress
then the laminar flow is analogous to that with the plug replaced by a solid cylinder
moving at the appropriate speed. Presumably, since the effective viscosity becomes
infinite at the yield surface the flow should be locally stabilized. Two different scenarios
may be postulated at transition: (i) transition may occur in the yielded annulus around
the plug, leaving intact the plug region; (ii) transition is retarded until the plug region
thins to such an extent that the Reynolds stresses (in the annular region) can exceed
the yield stress.

Scenario (i) is that described in Peixinho (2004) and Peixinho et al. (2005), where
during the first stage of transition the turbulence intensity level on the centreline is
reported as being similar to laminar levels. This is also the scenario assumed explicitly
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Figure 17. Deviations from the Kolmogorov scalings for (a) 80 % glycerin at Re =3456, (b)
0.2% Xanthan at Re = 3513 and (c) 0.1 % Carbopol at Re =2612. The data is displayed at
three different radial positions: �: r/R = − 0.75, �: r/R =0 and �: r/R = 0.75.
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Figure 18. Axial Reynolds stresses normalized by yield stress for four different concentration
levels of Carbopol. The filled symbols indicate points where the flow becomes transitional,
with puffs/slugs first observed.

in some phenomenological theories of transition, e.g. Slatter (1999) treats the plug as
a rigid body in developing his formula for transition.

In figure 18 we present the ratio of averaged Reynolds stress at the centreline (where
the level of velocity fluctuations is minimum) to the yield stress, as a function of the
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generalized Reynolds number ReG for the four different Carbopol concentrations
that we have used. The filled symbols in figure 18 mark the lowest value of ReG

for which puffs or slugs were detected in the experiments, for each of the different
concentrations of Carbopol.

We can observe that the mean Reynolds stress exceeds the yield stress in each
case. This remains true even if we subtract the laminar flow fluctuations from the
Reynolds stresses, interpreting them as instrumental noise. This suggests to us that the
second explanation given above is the more plausible, i.e. the plug has broken when
transition starts. This is further reinforced by the results of the previous section on
the structure functions, i.e. at these transitional/weak turbulent Reynolds numbers we
have observed very similar intermittency characteristics with Carbopol, right across
the pipe radius, as with Xanthan, where there is no yield stress. We should also
comment that for the concentrations of Carbopol that we have used, if we calculate
the (laminar) un-yielded plug diameters using

rp

R
=

2Lτ y

R	P
, (4.1)

where L is the length of the pipe, for the largest flow rates for which puffs or slugs
are not detected (see figure 19) these plug diameters are at most of the order 2 mm.
Thus, we do not anyway have a strong plug close to transition.

There is no contradiction with the data from Peixinho (2004) and Peixinho
et al. (2005), simply with its interpretation. Even with this thinning and breakup
of the plug, in the Reynolds number range preceding transition flow instabilities
are not sustained. Peixinho et al. (2005) report measuring low-frequency oscillations
away from the central region. Such low-frequency forcing, presumably with slow
axial variation could easily be responsible for slow extensional straining that yields
the true plug of the base flow into a pseudo-plug. This type of psuedo-plug also
occurs for example in thin film flows (Balmforth & Craster 1999), and in channels
of slowly varying width (Frigaard & Ryan 2004). In such flows the velocity remains
asymptotically close to the base flow solutions while shear and extensional stresses
combine to maintain the pseudo-plug at just above the yield stress. Such flows are
laminar but yielded and the psuedo-plug is characterized by large effective viscosity,



122 B. Güzel, T. Burghelea, I. A Frigaard and D. M. Martinez

which would presumably give similar characteristics to the base laminar flow in
controlling fluctuation level, as reported in Peixinho (2004) and Peixinho et al. (2005).
From our measurements of the velocity profiles, the mean velocity remains very plug-
like in the centre of the pipe in this upper range of laminar Reynolds numbers and
it is simply not possible to discern whether what is observed is a true plug or not.

Evidently the ideal situation would be to visualize transition within a plug region
of significant size in comparison to the pipe. Interestingly, this was the intention
of our experiments. Our study was started after discussions with C. Nouar about
ongoing experiments at LEMTA, Nancy, that were later reported in Peixinho (2004)
and Peixinho et al. (2005). These were conducted in a 30 mm pipe at lower speeds,
and for the flow rates at which transition occurred the plug region had radius of the
order of 1 mm: too small to detect if broken or not. This prompted our interest in
the role of the plug during transition, and we therefore designed our experiments at
a larger scale so that we could potentially achieve transition with higher yield stress
fluids, in larger diameter pipes and at higher speeds, hopefully also with a larger
plug radius at transition. We were apparently defeated in this objective, as the small
values of rp/R in figure 19 indicate. Together with the experiments in Peixinho (2004)
and Peixinho et al. (2005), our results contribute to the evidence that the plug region
must thin to such an extent that the Reynolds stresses can break it, before transition
commences.

5. Discussion and concluding remarks
In this work we measured the instantaneous velocity profiles of fully developed

Hagen–Poiseuille flow using three different classes of fluids. The goal of this work
was to develop a better understanding of transition in a yield stress fluid.

In § 3 of this work we characterized the flow field of the three different fluids and
found that during transition, a persistent asymmetry was found both in the time-
averaged velocity and in the local urms profiles. The asymmetry was confirmed by
high-speed video imaging of the puffs and slugs from which we observed that the
leading edge of the puff is elongated and located off the central axis of the pipe. Our
findings are thus complementary to those reported in Escudier et al. (2005).

Initially we were sceptical about the physical mechanisms creating the asymmetry
reported in Escudier et al. (2005), and about initial observations of the asymmetry in
our own apparatus. We thus took all precautions possible to eliminate systematic bias.
With regard to the Coriolis suggestions explored in Escudier et al. (2005), the Eckman
numbers in our experiments were also large, Vancouver is at 49.26◦ North and the
flow loop is oriented North–South. We found no evidence therefore to support this
idea. In addition to the other potential factors discussed in Escudier et al. (2005),
we also considered whether the optical properties of the fluids could affect the LDV
measurements and whether extensional stresses transmitted backwards from the end
tank (R2) could be responsible. Eventually, our scepticism about these asymmetries
has been rebuffed – we concur that they appear to be a fluid mechanical phenomenon.
Perhaps the strongest evidence for this has come from the systematic and repeatable
nature of the phenomena, but also with the asymmetries occurring for different fluids
in different parts of the pipe.

In the context of our aim to study transitional phenomena in shear-thinning yield
stress fluids, it is worth pointing out that the observed asymmetries have occurred
with all structured fluids. While none of these is rheologically perfect as a generalized
Newtonian fluid, the different fluids show different degrees of departure from this
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ideal model, e.g. for laponite thixotropy is certainly the dominant feature, apart from
the shear rheology, for Xanthan this would be visco-elasticity, etc. Thus, we suggest
that it is the commonality of these fluids, i.e. the (largely inelastic) shear-thinning
rheological behaviour, that is responsible for the asymmetry.

Recently, Esmael & Nouar (submitted) have offered an explanation for these
asymmetries in terms of the existence of a robust nonlinear coherent structure
characterized by two weakly modulated counter-rotating longitudinal vortices in the
region (approximately) occupied by the sheared fluid. This explanation seems plausible
in the light of recent developments in understanding of Newtonian fluid transition. To
support this conclusion, Esmael & Nouar (submitted) have measured these structures
both longitudinally and within the pipe cross-section, showing that there is a slow
axial rotation of an otherwise modal structure with one-fold symmetry. The form of
travelling wave solution is visually different to those computed for Newtonian fluids
by Faisst & Eckhardt (2003) and Wedin & Kerswell (2004), but that should anyway
be expected.

We concur with Peixinho (2004) and Peixinho et al. (2005) that transition takes
place in a different manner than for Newtonian fluids, with a first stage in which
the centreline velocity fluctuations are suppressed near to laminar levels while levels
nearer the pipe wall increase significantly. The consequence of this is that if r.m.s.

velocity or turbulence intensity components are to be monitored in order to detect
transition, a radial position nearer the wall should be chosen, e.g. here r/R = 0.75, or
r/R = 0.8 as advocated by Park et al. (1989) and Escudier et al. (1999).

We have reported our findings on characteristics of the puff/slugs, i.e. size and
velocity of the leading and trailing edges. For yield stress fluids we have observed
that the leading edges can be highly elongated and located off the central axis of the
pipe. The other main finding here is that the trailing edges of puffs appear to move
slower for the non-Newtonian fluids than for the Newtonian fluids reported in the
literature. The leading edge velocities are similar to those for Newtonian fluids. The
consequence of this is that puffs will spread slower in the axial direction as they travel
along a pipe. We have not made a distinction in our work between puffs and slugs,
referring simply to them all as puffs. This is because some distinguishing features in
Newtonian fluids, e.g. the ‘signature’ changes in centreline velocity, are simply less
clear for shear-thinning yield stress fluids. For such fluids the laminar and turbulent
velocity profiles are closer to each other, meaning that abrupt changes in centreline
velocity are reduced (see also Park et al. 1989; Peixinho et al. 2005).

We have also attempted to further characterize transition by examining both
an autocorrelation function and a probability distribution function of the velocity
fluctuations. The autocorrelation function shows some differences between the fluids,
indicates weakly coherent unsteady structures located away from the axis in the
non-Newtonian fluids and also indicates asymmetry. This occurs at Reynolds number
that are high, but are still lower than we would normally expect for transition.
For Newtonian fluids there is recent work on recurrent travelling waves at Reynolds
numbers in these ranges, e.g. Kerswell & Tutty (2007). While our data may correspond
to a non-Newtonian version of such structures, we have no strong evidence and
prefer to leave the interpretation open to the reader. For the probability distribution
functions there were no significant differences between the different classes of fluids
examined.

Of more interest was the third statistical measure of the fluid we used, namely a
structure function, in which we found that in transitional flow, the shear-thinning and
yield stress fluids behaved somewhat similarly. This was the first indication that in
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U (m s−1) γ̇ (s−1) κ (Pa·sn) n ReG T (◦C)

0.2776 0.2–46 0.11 0.65 352 29
0.5396 0.5–90 0.11 0.65 858 29
0.7163 0.7–137 0.11 0.65 1218 29
0.9413 1–224 0.14 0.56 1900 29
1.1224 1–270 0.135 0.56 2363 30
1.4850 2–501 0.13 0.56 3244 30.5
2.2756 2–835 0.13 0.56 5736 31
3.4615 3–1311 0.13 0.56 10 197 34

Table 5. Flow conditions and power-law parameters for 0.2 % Xanthan gum.

U (m s−1) γ̇ (s−1) κ (Pa·sn) n ReG T (◦C)

0.4613 0.1–82 0.23 0.56 451 30
0.6957 0.1–118 0.23 0.56 809 30
0.8775 1–192 0.22 0.56 1185 30
1.3574 2–598 0.20 0.56 2244 31
1.5616 1–635 0.14 0.64 2542 32
2.0574 1–692 0.11 0.69 3513 33
2.5877 1–988 0.10 0.69 5070 34

Table 6. Flow conditions and power-law parameters for 0.2 % Xanthan gum.

U (m s−1) γ̇ (s−1) κ (Pa·sn) n ReG T (◦C)

0.3747 0.2–66 0.0235 0.77 1701 30
0.4529 0.3–78 0.0235 0.77 2131 31
0.4954 0.5–113 0.019 0.78 2789 32
0.5414 0.5–104 0.015 0.80 3538 33
0.8802 0.4–301 0.0103 0.80 8370 33
2.0203 2–757 0.0083 0.82 24 746 34

Table 7. Flow conditions and power-law parameters for 0.1 % Xanthan gum.

U (m s−1) γ̇ (s−1) τ y (Pa) κ (Pa·sn) n rp (mm) ReG T (◦C)

0.11202 0.1–24 2 2.05 0.36 5.55 5.5 29
0.4622 0.1–87 1.5 2.01 0.40 2.57 67 29
1.2076 1–220 1.4 1.59 0.43 1.84 378 29
2.0461 5–414 1.3 1.20 0.48 1.40 937 31
2.3218 5–472 1.2 0.92 0.53 1.20 1160 32.5
3.1146 5–657 1 0.65 0.60 − 1735 36
3.9005 5–1261 0.6 0.35 0.65 − 2920 39
4.3967 5–1559 0.4 0.20 0.70 − 4488 43

Table 8. Flow conditions and Herschel–Bulkley parameters for 0.1 % Carbopol.

transitional flow, the effect of the plug was minimal on the flow structure. In § 4 we
have presented evidence that as transition occurs the plug actually thins to an extent
where the Reynolds stresses are sufficient to break it.

The financial support of the Natural Sciences and Engineering Research Council of
Canada (NSERC) is gratefully acknowledged as is that of the Canada Foundation for
Innovation, New Opportunities Programme. We thank Chérif Nouar for numerous



Laminar–turbulent transition of a yield stress fluid 125

U (m s−1) γ̇ (s−1) τ y (Pa) κ (Pa·sn) n rp (mm) ReG T (◦C)

0.3093 0.2–62 1.80 1.11 0.50 4.11 42 34
1.0233 0.1–181 1.58 0.71 0.53 2.90 397 34
1.5457 0.1–267 0.95 0.60 0.54 1.67 914 34.5
2.3849 0.1–495 0.90 0.50 0.54 − 2001 36.5
2.5912 5–591 0.90 0.50 0.54 − 2238 37
3.0411 5–1063 0.52 0.39 0.58 − 2612 38
3.5002 3–1296 0.30 0.26 0.65 − 3309 39

Table 9. Flow conditions and Herschel–Bulkley parameters for 0.1 % Carbopol.

U (m s−1) γ̇ (s−1) τ y (Pa) κ (Pa·sn) n rp (mm) ReG T (◦C)

0.1278 0.1–29 6.0 4.79 0.37 6.29 2.7 31
1.068 1–201 5.7 3.66 0.42 3.33 123 32
1.304 2–235 5.7 3.28 0.44 3.11 176 32
2.5573 0.4–480 5.6 2.87 0.46 2.40 561 35
3.6459 1–849 4.7 2.17 0.48 2.04 1120 39
3.7424 2–1065 1.7 1.7 0.48 − 1750 50
4.3054 2–1609 1.6 1.77 0.48 − 1804 45
4.8443 8–1816 0.72 0.93 0.52 − 2953 40

Table 10. Flow conditions and Herschel–Bulkley parameters for 0.15 % Carbopol.

U (m s−1) γ̇ (s−1) τ y (Pa) κ (Pa·sn) n rp (mm) ReG T (◦C)

0.3902 0.6–70 0.38 0.37 0.58 1.89 170 30
0.7227 0.1–131 0.30 0.29 0.60 1.29 526 30
1.0754 3–195 0.28 0.26 0.61 1.01 984 30
1.4977 7–290 0.23 0.22 0.62 − 1770 31
1.697 2–358 0.21 0.21 0.63 − 2089 32
2.4452 0.1–864 0.12 0.16 0.65 − 3442 34
2.9218 6–1075 0.045 0.12 0.68 − 5134 36

Table 11. Flow conditions and Herschel–Bulkley parameters for 0.075 % Carbopol.

U (m s−1) γ̇ (s−1) τ y (Pa) κ (Pa·sn) n rp (mm) ReG T (◦C)

0.1429 0.1–24 0.0065 0.0268 0.86 0.39 356 30
0.2792 1–49 0.0060 0.0188 0.86 0.29 1 098 30
0.4108 0.1–71 0.0052 0.0173 0.88 0.18 1 717 31
0.4736 3–103 0.0045 0.0153 0.90 − 2 114 30
0.5102 2–123 0.0040 0.0133 0.90 − 2 615 30
0.9108 0.7–393 0.0035 0.0110 0.91 − 5 409 30
1.4876 3–617 0.0025 0.0090 0.92 − 10 960 31

Table 12. Flow conditions and Herschel–Bulkley parameters for 0.05 % Carbopol.

fruitful discussions during visits both in Nancy & Vancouver during the course of
this work.

Appendix. Fitted rheological parameters for the experiments conducted
We present below the fitted rheological parameters for the non-Newtonian fluids

in our experiments. For each table we present the mean axial velocity U , the range
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of shear rates over which data was measured in the rheometer in order to fit the
parameters, the fitted rheological parameters, the radius of the plug (only if in
laminar flow and with a yield stress fluid), the generalized Reynolds number and the
temperature.
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